Towards a Unified Theory for Pre-Earthquake Signals

Ames Research Center

Friedemann Freund

NASA Ames Research Center, Earth Science Div. Carl Sagan Center, SETI Institute Dept. Physics, San Jose State University friedemann.t.freund@nasa.gov

Work supported by NASA through "Earth Surface and Interior" program Feb. 04, 200 and by a grant from the NASA Mes Research Center.

Contents

I'll talk about:

- Stress-activated charge carriers in rocks
- Surface potentials
- Surface electric fields
- Massive air ionization
- "Thermal Infrared Anomalies"

I'll have little or no time to talk about:

- EM emission
- other pre-EQ indicators

The tools familiar to seismologists are wonderful and powerful, well suited to study seismic events

...but the tools familiar to seismologists may not be appropriate to study non-seismic, non-geodesic pre-earthquake phenomena

Fundamental Solid State Defect

Oxygen anions in minerals in igneous and high-grade metamorphic rocks exist in the valence 1– (instead of the usual 2–)

instead of O₃Si-O-SiO₃

there is O₃Si-OO-SiO₃

Quartz, feldspars, pyroxenes, etc.

Peroxy is a diamagnetic point defect about 100-1000 ppm

Peroxy

Peroxy is a dormant self-trapped positive hole pair

When stresses are applied, dislocations move

- O⁻ in a matrix of O²⁻ is a defect electron
- Positive hole or phole for short
- A phole is a positive charge carrier, h[•]
- h[•] reside in the oxygen anion sublattice

.

- h' reside in the valence band
- h[•] propagate at ~200 m/sec (measured)
- h[•] travel fast and far

 meters in the lab, kilometers in the field

4 m long slab of granite to be squeezed at one end

- 1. Current instantly starts to flow at very low stress levels
- 2. Current saturates
- 3. Current continues to flow at constant load

If h[•] travel along valence band, they will pass across any grain-to-grain contact

In addition,

h' accumulate at the surface

King and Freund, Phys. Rev. 1984

lon current through air gap

When rock is stressed at one end,

air molecules become field-ionized at the other end forming positive ions

~10⁹ positive airborne ions cm⁻² sec⁻¹

When rock is stressed at one end,

corona discharges occur at other end, forming free electrons and negative ions

Surface potential

starts out positive

To build up 1 V surface potential requires ~10¹⁰ charges per cm²

Feb. 04, 2009

Now we understand the surface potential changes

Step 1, a positive surface charge builds up: +3 V

Step 2, positive airborne ions form: ~10⁹ cm⁻² sec⁻¹

Step 3, corona discharges set in, generating free electrons and negative airborne ions: ~10¹⁰ cm⁻² sec⁻¹

Applications

If h' arrive at Earth surface and create high E fields, we expect to see:

Field ionization of air molecules

Sources of air ionization

- cosmic rays
- beta, gamma from Earth
- alpha from radon

QuakeFinder Air Conductivity Sensor at Milpitas Site

Courtesy Tom Bleier, QuakeFinder

Air Ionization Field Measurements in Japan

A cloud over Bam, Iran: MeteoSat

Courtesy Shou Zhonghao after Guangmeng Guo & Bin Wan 2008

Bam Earthquake M=6.8, Iran, Dec. 26, 2003

Feb. 04, 2009

Friedemann Freund

Pre-Earthquake Ionospheric Perturbations

Massive air ionization will change vertical E field

Equivalent to ~1000 A km⁻²

will affect ionosphere

(Courtesy Valery Sorokin, 2008)

Friedemann Freund

Feb. 04, 2009

Radio-Tomography of the lonosphere (RTI)

HORT (High Orbital Radio Tomography) LORT (Low Orbital Radio Tomography)

Summary so far

- When rocks are stressed, they turn into a battery
- Currents flow out of stressed rock volume
- Charge carriers are positive holes, h•
- h• accumulate at the surface
- High electric fields
- Air ionization: Atmospheric effects

Ionospheric effects √

h' charge carriers recombine at surface

Energy released: ~ 2.4 eV

- ~ 2.4 eV deposited into new O–O bond
- ~ 2.4 eV equivalent to vibrational T of ~30,000 K

Very "hot" atoms

Emission of IR photons

Friedemann Freund

Experiment

FT-IR spectroradiometer

IR emission anorthosite

IR emission anorthosite

Difference spectra

Intensity fluctuations during stressing

Anorthosite Run #12

This is **NOT** thermal IR radiation

- IR photons due to de-excitation
- Quantum-mechanically controlled
- Spectroscopically distinct

Applications

"Thermal Infrared Anomalies"

- First reported in early 1990s
- Areas of enhanced IR emission
 - begin several days before major EQs
 - spread over large areas (up to 500 x 500 km²)
 - end soon after seismic event and aftershocks

~200 x 100 km²

M = 6.4 event in SE Iran

22 Feb. 2005

Desert environment Ideal viewing conditions

NOAA AVHRR satellite

(from: Arun Saraf et al. Natural Hazards 2008)

IR emission from region of maximum uplift/subsidence

(from: Arun Saraf Natural Hazards 2008)

Gujarat EQ (India): Jan. 26, 2001 Depth 24 Km; M=7.6

Faults "light up" in the IR before earthquake

Jan 17: **-9 days**

Jan 18: -8 days

(After Ouzounov and Freund, Adv. Space Sci. 2004)

Feb. 04, 2009

Friedemann Freund

Wenchuan M~7.9

Sichuan, China, May 12, 2008

TIR anomaly average March 2008

Feb. 04, 2009

Courtesy Dimitar Ouzounov, NASA GSFC May 12, 2008 Friedemann Freund

Non-seismic pre-EQ phenomena appear as

- Atmospheric effects \checkmark
- − Ionospheric effects √
- − IR emission √
- other ephemeral phenomena like EM emissions
 ...no time today

Conclusions

- Non-seismic pre-EQ phenomena appear as
 - Atmospheric effects \checkmark
 - − Ionospheric effects √
 - − IR emission √
 - other ephemeral phenomena like EM emissions...
- We begin to understand the underlying physics
- Everything points to h' charge carriers, stress-activated in the rocks deep below
- The h[•] provide the basis for a unifying theory

Collaborators

- Ipek Kulahci, Carl Sagan Center, SETI Institute, Mountain View.
- **Gary Cyr**, San Jose State University Foundation.
- Minoru Freund, Jennifer Dungan, Vern Vanderbilt, Christine Hlavka, Buzz Slye NASA Ames Research Center.

Summer Students

• Milton Bose, Julia Ling, Jeremy Tregloan-Reed, Matthew Winnick, Shicong Xi, James King

NASA Engineering Staff

Jerry Wang, Lynn Hofland, Frank Pichay, Ben Helvensteijn

