

Jet Propulsion Laboratory California Institute of Technology

Current Progress Using Multiple Electromagnetic Indicators for Earthquakes in California and Peru

Tom Bleier, Clark Dunson, Steve Roth: Jorge Heraud, Antonio Lira: Friedemann Freund, Robert Dahlgren: Ray Bambery, Nevin Bryant: Dimitar Ouzounov QuakeFinder PUCP Peru SETI, NASA Ames NASA JPL/CIT Chapman University

- 1. Are there Electromagnetic (EM) signals prior to earthquakes?
 - Need documented evidence using field instruments

- 1. Are there Electromagnetic (EM) signals prior to earthquakes?
 - Need documented evidence using field instruments
- 2. Is there a reasonable theory to explain them?
 - Physics-based theory of rock stress

- 1. Are there Electromagnetic (EM) signals prior to earthquakes?
 - Need documented evidence using field instruments
- 2. Is there a reasonable theory to explain them?
 - Physics-based theory of rock stress
- 3. Can we detect these unique EM signals?
 - Threshold and range?

- 1. Are there Electromagnetic (EM) signals prior to earthquakes?
 - Need documented evidence using field instruments
- 2. Is there a reasonable theory to explain them?
 - Physics-based theory of rock stress
- 3. Can we detect these unique EM signals?
 - Threshold and range?
- 4. Can we discriminate earthquake EM from noise?
 - Lightning, vehicles, machinery, solar storms, etc.

- 1. Are there Electromagnetic (EM) signals prior to earthquakes?
 - Need documented evidence using field instruments
- 2. Is there a reasonable theory to explain them?
 - Physics-based theory of rock stress
- 3. Can we detect these unique EM signals?
 - Threshold and range?
- 4. Can we discriminate earthquake EM from noise?
 - Lightning, vehicles, machinery, solar storms, etc.
- 5. Can we make forecasts based on EM signals?
 - Can they be made reliable?

1. Are there Electromagnetic (EM) signals prior to earthquakes? Ultra Low Frequency (ULF) Magnetic fields

- Dr Tony Fraser-Smith (Stanford)
 - 1989 M7.1 Loma Prieta earthquake
 - 30 minute energy averages recorded*
 - Only 1 site*

*Not sufficient

Evidence from multiple earthquakes: "Uni-polar Magnetic Pulses"

1. Are there Electromagnetic (EM) signals prior to earthquakes? Ultra Low Frequency (ULF) Magnetic Fields (Alum Rock, Ca)

New: Pulse and Quake Activity: Tacna Apr. 1 to Nov 10

New: El Carmen, Peru Pulse Count 2010

1. Are there Electromagnetic (EM) signals prior to earthquakes? "Earthquake Lights"

- Visible Light Signatures "Earthquake Lights"
- Minutes before/after earthquake

Figures 1 to 19 show earthquakes lights as published by Yasui (1968). All are from the Matsushiro, Japan area and are samples of the only known pictures of earthquake lights. They were taken by a Matsashiro dentist, Mr. T. Kuribayashi.

Pictures taken in Japan '70-'80's

New: Earthquake Lights: Lima Peru, 15 August, 2007 at 18:41:00 LT,

160 km north of the M8.0 epicenter Near time of P, S Wave arrival

Artist rendering from eye witness reports

Jorge Heraud, Antonio Lira: PUCP Peru

2. Is There a Reasonable Theory to Explain EM Signals?

Pulse Comparison with Field Tests Aug, 2009 Bass Lake, Ca.

3. Can we detect these unique EM signals? QuakeFinder formed in 2000 to Investigate

- QuakeFinder Observatories
 - California, Peru, Taiwan
 - Instruments
- Magnetic Signals
 - Pulse Structure
 - Pulse Counts
 - Pulse Azimuth Clusters
- Air Conductivity

Magnetic Observatories QuakeFinder, USGS, Berkeley, PUCP (Peru), NCU (Taiwan)

San Francisco

Site Location Historical

Earthquakes 1973+

Peru

Chile

California

Mexico

Taiwan

Southern California

Northern California

Original combined Air Conductivity sensor

New dual (+/-) Air Conductivity sensors

New QF-2010 mag. new (top) QF-1005,1007 mag. (middle) QF-1003, H.S. mag. (bottom)

Tacna, Peru

QF-1005,7 mag. response Noise floor, (bottom) Ambient signal (top)

Tacna, Peru

Tacna: 13 days Prior to M6.2 at 29km Distance

Other EM Indicators

- Pulse Azimuth Clusters
- Air Conductivity Changes
- Infra Red Signatures

 Night time heating (GOES, MeteoSat)
 "Hot Spots" (MODIS)
- Simultaneous Indicators

Tacna <u>Pulse Azimuth</u> Plot Channel 1 (N-S), Exp-7 Pulse Detector

Most pulse azimuths (direction of arrival) are random These pulses tended to "cluster" along a common direction of arrival

Air Conductivity

Electromagnetic Theory and Effects Air Conductivity Changes

9 10 11

Air Conductivity at Alum Rock

Infra Red Signals

Theory and Effects

Infra Red Apparent Heating

Bambery, Bryant NASA JPL

Oct 17, 2007 +0.3616

Night time cooling slope (Alum Rock M5.4 Oct 2007)

Friedemann Freund

IR "Hot Spot" (NASA AQUA/AIRS Data) (D. Ouzounov Chapman University)

Simultaneous EM Signature Comparison Alum Rock M5.4

4. Can We Discriminate Earthquake EM from Noise?

 Are there Electromagnetic (EM) signals prior to earthquakes? There is now evidence (ULF magnetic pulses, Air Conductivity, IR)

(Not addressed: radon, ionospheric changes, clouds, animals)

 Are there Electromagnetic (EM) signals prior to earthquakes? There is now evidence (ULF magnetic pulses, Air Conductivity, IR)

Not addressed: radon, ionospheric changes, clouds, animals)

- Is there a reasonable theory to explain them?
 - **Yes** (Lab and Field evidence starting to validate P-Hole Theory)

• Are there Electromagnetic (EM) signals prior to earthquakes? There is now evidence (ULF magnetic pulses, Air Conductivity, IR)

(Not addressed: radon, ionospheric changes, clouds, animals)

Is there a reasonable theory to explain them? Yes (Lab and Field evidence starting to validate P-Hole Theory)
Can we detect them? Time (2 weeks), location (30km), M+/-1)

Encouraging (Magnetometers, Air Conductivity, IR—perhaps others)

• Are there Electromagnetic (EM) signals prior to earthquakes? There is now evidence (ULF magnetic pulses, Air Conductivity, IR)

(Not addressed: radon, ionospheric changes, clouds, animals)

- Is there a reasonable theory to explain them?
 Yes (Lab and Field evidence starting to validate P-Hole Theory)
- Can we detect them? Time (2 weeks), location (30km), M+/-1)
 Encouraging (Magnetometers, Air Conductivity, IR—perhaps others)
- Can we discriminate earthquake EM from noise?
 Very Important (Requires complex set of algorithms and "tuning")

• Are there Electromagnetic (EM) signals prior to earthquakes? There is now evidence (ULF magnetic pulses, Air Conductivity, IR)

(Not addressed: radon, ionospheric changes, clouds, animals)

- Is there a reasonable theory to explain them?
 Yes (Lab and Field evidence starting to validate P-Hole Theory)
- Can we detect them? Time (2 weeks), location (30km), M+/-1)
 Encouraging (Magnetometers, Air Conductivity, IR—perhaps others)
- Can we discriminate earthquake EM from noise?
 Very Important (Requires complex set of algorithms and "tuning")
- Can we make forecasts based on EM signals?
 Positive (Need more quake examples and tuning of algorithms)

Thank You

Other Pulse Examples: Recent Earthquakes

El Carmen, Peru Pulses 17 days Prior to Quake

7 Days Prior to Quake

Day of Quake

El Carmen, Peru Air Conductivity: 6 days Prior to Quake

Air Conductivity: 5 days Prior to Quake

Air Conductivity: 1 day Prior to Quake

Air Conductivity: Day of Quake

Tacna, Peru 30 Days prior to M 5.2 Distance 140 km, Depth 103 km

New Pulse Counter (Exp-7) Thresholds

GPS Vertical Displacement: Alum Rock 2007

This material is based on data provided by the Plate Boundary Observatory Operated by UNAVCO for EarthScope (www.earthscope.org) and supported by the National Science Foundation (No. EAR-0350028 and EAR-0732947

Example of Uni-Pulse correlation at Ocotillo and E. Gilroy Gilroy is shifted 226 sec earlier

101 10, 201

Example of Uni-Pulse correlation at Tacna and El Carmen Tacna is shifted 402 seconds earlier

